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Introduction:

Under a prior research effort entitled "Flow around Maneuvering Appended Bodies" the
NSF Engineering Research Center at Mississippi State University (MSU/ERC) and the
Applied Research Laboratory at The Pennsylvania State University (ARL) developed a
physics-based means of predicting the maneuvering characteristics of a self-propelled,
fully-appended underwater vehicles. Subsequently, a follow-on project to extend the initial
capability was undertaken. This effort addresses many of the issues that remained at the
conclusion of the original project. Specific areas being addressed include: (1)
computation of flow at very high (full-scale) Reynolds number, (2) investigation of different
grid topologies, (3) turbulence models studies, (4) effective use of parallel processing, and
(5) Depth-changing maneuvers. Subsequently, the follow-on effort was divided into two
parts to allow consideration of classified configurations under a separate project.

1. Computation of flow at very high (full-scale) Reynolds number:

To evaluate the issues involved in conducting high Reynolds number computations, a
case study is set up to perform Navier-Stokes computations at a very high Reynolds
number.

SUBOFF, a model scale submarine, has been one of the geometries used for the
validation of the method developed in the course of the above mentioned research effort.
The Reynolds number is 12 million for the experimental and computational studies
performed with SUBOFF (based on body length). However, the full scale Reynolds
number for submarines is about two orders of magnitudes higher than the one used for
the model scale. Therefore, in the case study, a Reynolds number of 1.2 billion (based on
body length) was used, corresponding to a full-scale submarine operating Reynolds
number. The SUBOFF geometry with four stern appendages used for this case is shown
in Figure 1. Since a grid for this case already existed, it was re-gridded to satisfy the high
Reynolds requirement for resolving the boundary layer.

The near-body, high grid resolution requirement may increase the degree of difficulty for
the timely creation of the grids with the currently available grid generation packages. The
cell aspect ratio increases substantially and generally it is much harder to create a good
quality grid. This tests the robustness of the flow solver and may increase the number of
cycles required for convergence. Accurate definition of the underlying body geometry
(with CAD) is also a difficult requirement. Typically the manufacturing tolerance
requirements for the geometry are much larger than the high Reynolds number grid
tolerance requirements, and many CAD programs are not well-suited to providing the high
tolerance needed for RANS grid generation.

Figure 2 shows the comparison between the computed velocity profile (using the Baldwin-
Lomax turbulence model) and the law of the wall for the Reynolds number of 12 million
(based on the body length). This velocity profile is taken on the parallel mid-section of the
hull. It can be seen that the velocity profile has been predicted with approximately two




grid points in the viscous sublayer. Figure 3 shows the velocity profile at the same axial
location for the Reynolds number computations of 1.2 billion. The total number of grid
points used for both computations, as well as grid density on the hull and appendages,
are also shown in these figures. The velocity profile for the high Reynolds number
computation, normal to an appendage at /R = 0.8, where r is the radial distance from the
centerline and R is the radius of the hull, is shown in Figure 4.

Figures 5 and 6 show the integrated axial force coefficient for both computations. The
contribution of the viscous stresses and pressure to the axial force are also shown in
these figures. It is noted that the number of cycles required to convergence has increased
dramatically for the higher Reynolds number case. A better quality grid can decrease the
number of cycles required to achieve convergence. This was demonstrated by MSU/ERC
in a similar computation with an improved grid. The need to create good quality grids in a
timely manner lead to the following study.

2. Investigation of different grid topologies

A study to improve grid quality and simplify grid generation for complex geometries was
initiated under a separate propulsor analysis effort. The lessons learned from that study
were applied to a submarine configuration as described below.

This study intended to investigate the implementation of alternate grid topologies, to
explore ways to accelerate the grid generation process and to improve the quality of the
final grid. The geometry used for this study is SUBOFF with four stern appendages. Most
early versions of the flow solver UNCLE require a certain type of grid topology namely,
CH-grid type. This requirement imposes restrictions on the quality of the grid and on the
density of the grid points near solid surfaces; on certain geometries, an O-grid or an OH-
grid may yield a better quality grid. More recent versions of the UNCLE code do not have
this grid topology restriction.

For this study, two grid generation software packages were considered: EAGLEVIEW and
GRIDPRO. EAGLEVIEW was used to create an H-grid around the stern appendages
whereas GRIDPRO was used to create OH-grid around the hull and appendages. The
EAGLEVIEW grid was generated several years ago by MSU/ERC. The commercially
available GRIDGEN package is now used by ARL, since EAGLEVIEW is no longer
supported.

GRIDPRO is designed to create O-grids around surfaces. The O-grid may then be
surrounded by an H-grid configuration. In GRIDPRO, once the grid topology is defined,
the grid generation is automatic. However, if the topology is not satisfactory GRIDPRO
will not converge and therefore, will not yield a usable grid. GRIDPRO creates a large
number of blocks, which with the help of a postprocessor can be reduced. These blocks
are located somewhat arbitrarily relative to one another with arbitrary alignment of the
computational coordinate directions that makes it difficult to distinguish the block
interfaces. Therefore, a preprocessor was developed to identify the inter-block surfaces




and set up an important input file for the paraliel code. Figure 7 shows the overall
blocking structure used by EAGLEVIEW to create a CH-grid and the blocking structure
created by GRIDPRO to generate the OH-grid. [t should be noted that the block structure
created by GRIDPRO is automatically created by the software from the user-defined
topology, whereas with EAGELVIEW the user explicitly defines the structure. Figures 9
and 10 show the grid around an appendage in the stern region for both the H-grid and O-
grid. It should be noted that the grid points around the appendage are much denser for
the OH-grid than the H-grid (by approximately one order of magnitude). The first grid
point off the appendage surface is 1.1 x 10 for the OH-grid and 4.9 x 107 for the H-grid,
both in units of body length.

Three computations were performed o examine the grid created by the GRIDPRO for
SUBOFF with four stern appendages. These computations are performed at 0, 8 and 18
degree angle of drift. Velocity profiles, taken at the mid-section of the hull, for both grid
types are shown in Figures 2 and 11. It should be noted that the distribution of the grid
points normal to the hull is much denser for the OH-grid than the H-grid. The viscous
sublayer is defined with eight grid points for the OH-grid whereas it is defined with only
two grid points for the H-grid. This high resolution with the OH-grid guarantees that the
viscous stresses are well predicted.

The convergence history for the axial force coefficient is shown in Figure 12. Both cases
were run with the Baldwin-Lomax model. As shown, the OH-grid takes longer to converge
than H-grid. This is partly because the multi-grid scheme could not be used for the OH-
grid, since the number of grid points in each block was not set to allow multi-grid. Also,
the higher cell aspect ratio and near-surface resolution might reduce the convergence
rate, especially in the absence of multi-grid iterations.

Further, the Baldwin-Lomax model with a search parameter of 2500 was used for the flow
computation for the H-grid. The search parameter use is described in the attached
publication, Appendix A. No search parameter was specified for the OH-grid computation,
so that the search for Fax extended {o the far field boundary.

The variation of the axial force coefficient versus angle of drift for the two grid topologies,
CH and OH, are shown in Figure 13. The experimental data is also shown in this figure.
For small angles of drift, the computation performed on the OH-grid is closer to the
experimental data than the CH-grid computations. For angles of drift between 10 and 18
degrees, the CH-grid results are closer to the experimental results for negative values of
angle of drift. It should be noted that the original Baldwin-Lomax turbulence model is used
for the latter two calculations. A prediction using Coakley’s g-w turbulence model is also
shown in the figure. Figure 13 also shows the prediction for CH-grid using Baldwin-Lomax
turbulence model with the search parameter of 2500. A very good comparison with the
experimental data is observed for positive values of the angle of drift. Because of the
asymmetry in the experimental data (for a symmetric body), no model can predict these
experimental data for both positive and negative values of the drift angle. The asymmetry
in the data indicates an additional error not captured by the uncertainty bars shown. A
more detailed analysis of the choice of the turbulence models on the predicted results is




given in the enclosed publication. The present results indicate the need for a systematic
grid resolution study to properly quantify the grid-refated errors. This must be done before
a more thorough analysis of the turbulence model can be performed.

Comparison of the predicted pressure coefficients and the experimental data are shown in
Figures 14 and 15. The only deviation between the experimental data and the
computational results occurs at the tip of the appendage for the H-grid. This is
understandable, since the tip of the appendage in this grid is "pinched” and the tip is
shaped like a triangular prism, rather than being flat, which is the case with the OH-grid.
Apparently, this did not lead to significant errors in the overall force and moment
predictions for the captive model tests. Note that cap blocks are required for either
topology to accurately capture the actual (flat) tip geometry.

Comparison of the predicted skin friction for the OH-grid with the experimental data is
shown in Figure 16. Considering the magnitude of the skin friction, the prediction is very
reasonable.

An important feature of a grid is its ability to capture flow features of interest in the
computational domain. Figure 9 shows grid distribution around an appendage, using the
H-grid created with EAGLEVIEW and the OH-grid created with GRIDPRO. As shown in
this figure, grid points for the H-grid are more densely distributed downstream of the
trailing edge. This OH-grid was not constructed to capture the appendage wake;
therefore the H-grid solution better captures the wake and the flow aft of the trailing edge.
Figures 17 and 18 show the axial-component of the velocity on the appendages at 18-
degree angle of drift for the H-grid and for the OH-grid, respectively. The H-grid
qualitatively predicts expected flow features such as shed vortices. Considering cases
where a propulsor exists immediately downstream of the fins, these vortices will interact
with the propulsor and will change the loading on the propulsor. As indicated by these
figures this particular OH-grid fails to capture the flow features shown by the H-grid aft of
the trailing edge. However, in the absence of experimental flow data in this region, it is
not possible to make a definitive statement about the required resolution. This
demonstrates the need for further work to quantify the required resolution of salient flow
features needed to accurately predict propulsor side forces during maneuvering situations.

Figures 19(a)-(b) show the pressure distribution on the SUBOFF for both grid topologies
at 18-degree incidence angle. Contours of pressure on a plane perpendicular to the body
are also shown in these figures. It should be noted that in the H-grid case, the Baldwin-
Lomax turbulence model with the search parameter of 2500 was used and in the case of
the OH-grid, the search parameter is not limited. To capture the vortical structure as
depicted by the H-grid computation, it might be necessary to refine the OH-grid or to
implement the search parameter limitation. The computed pressure distribution in the
stern region at the 18-degree drift angle for the OH-grid is shown in Figure 20.



3. Turbulence model investigation:

A modified version of the Baldwin-Lomax model has been developed, and various
versions of the k-¢ and g-w models were evaluated.

A series of computations were performed to evaluate the suitability of several algebraic as
well as two-equation turbulence models. The algebraic models considered are the
original Baldwin-Lomax model, the Degani and Schiff variation of the Baldwin-Lomax
model, and a new proposed model. Furthermore, the two-equation model of Coakley was
also evaluated. Forthe CH-grid used, the computations demonstrate that the original
Baldwin-Lomax is not suitable for the three-dimensional computations that include vortical
structure away from the body. This model dissipates and distorts the vortical structures
and underestimates axial and lateral forces. The modified Baldwin-Lomax model with the
specified search parameter produces well-defined vortices, and the computed forces
compare well with the experimental data if a suitable search parameter is used. However,
obtaining the best value of the search parameter relies on trial and error; therefore, these
models are not general.

A new proposed algebraic model is a more general mode! that does not need a search
parameter and does not require prior knowledge of the location of the leeward or
windward side of the hull. It preserves the structure of the vortices better than the original
Baldwin-Lomax model, although not as good as when the optimal search parameter is
specified. However, in its present form, it assumes that the core of the vortical structures
is aligned with the centerline axis of the body. A more general extension of the model
should consider alignment of the vortical structures in any direction. The two-equation
model of Coakley was also considered for several computations. This model avoids any
problem-specific tailoring and is able to predict the forces on the body; however, a price is
paid in terms of efficiency and robustness. In addition, the eddy viscosity appears to be
too high in the cores of the shed vortices, and so the vortices diffuse too quickly.

More than thirty cases were computed to study various versions of the Baldwin-Lomax
model and two-equation models. A detailed description of the cases computed and the
results are given in the attached paper, Appendix A.

4. Parallel Processing:

A major issue in developing parallel codes relates to load balancing among the various
processors. The parallel UNCLE code is structured to run one block per processor.
Therefore, proper load balancing occurs only if all the blocks in the domain have the same
number of grid points. Under this constraint each processor experiences the same
execution load. In practice, this assumption has some shortcomings. First, it is not
always practical or even possible to split the computational domain into equally sized
blocks. This is especially true when the geometry is complex and contains numerous
appendages. In these situations the geometry dictates breaking the computational
domain into blocks of varying sizes, resulting in a very unbalanced loading of the




processors. Second, when the number of blocks exceeds the number of available
processors, it will become necessary to submit more than one block to some or all
processors. In order to overcome these shortcomings, a 'relative frame’ version of the
parallel version of UNCLE (denoted UNCLE-REL) was modified under another project to
enable submission of any number of blocks to a single processor. In this way, balanced
loading can be obtained by bundling a collection of small sized blocks together and
submitting them to a single processor. The total number of grid points in those blocks is
constrained only by the available memory for each processor. Furthermore, in situations
where the number of processors are less than the number of the blocks, the computation
still can be executed, provided that sufficient memory is available.

For verification purposes a calcuiation was performed with the modified parallel UNCLE-
REL on a flat plate with four blocks -- each set of two blocks are submitted to a single
processor. The results are identical with the results obtained using an ARL serial version
of the UNCLE code. In the future, it would be desirable to apply the same modifications to
the more general ‘clicking’ version of the UNCLE code, recently obtained from MSU/ERC.
This version has been rewritten using many features of FORTRAN 90 and it is
substantially different from UNCLE-REL.

5. Depth-changing Maneuvers:

Two maneuvering computations are performed to investigate the depth-changing
maneuvers of a fully appended submarine type vehicle. The geometry used for these
computations is that of the SUBOFF. It includes: sail, sailplanes, rudders, and horizontal
stern planes and an open, five bladed propulsor. It should be noted that the original
SUBOFF does not include sailplanes, nor does it include a propulsor. These components
are added to the original SUBOFF to (a) make the vehicle a self-propelied vehicle and (b)
to resemble a real submarine with all the appendages. However, there are no
experimental data available to compare with the computational simulations, but the
purpose behind these calculations are to demonstrate the applicability of the method and
to observe that the characteristics of the maneuvering simulations correlates to the
physics of the problem.

To induce a change on the elevation of a submarine, typically the horizontal stern planes
are deflected. To simulate the effects of the deflections of the sternplanes, an external
vertical thrust is applied on the planes. Based on the magnitude and direction of these
forces, the integrated value of the forces and moments on the whole vehicle changes.
The net result leads to change in the direction of motion of the vehicle and eventually to
the change in the elevation of the vehicle.

All maneuvering computations start from a periodic solution at which only the governing
equations of the fluid flow are numerically solved. Once the periodic solution is achieved
equations governing vehicle dynamics are iteratively solved with the flow equations to
simulate the maneuver.




Two depth-changing maneuvers are performed, a rising maneuvers and a diving
maneuvers.

Rising Maneuver:

The trajectory of the vehicle during the rising maneuver is shown in Fig. 21. During this
maneuver, the vehicle goes through five distinct phases. (1) Straight-and-level phase that
extends from t = 0.0, to t = 3.0. During this period, no external force is applied to the
vehicle and it is moving forward under the thrust induced by its own propulsor.  (2) Pitch-
up phase extends from approximately t = 3.0 to t = 4.0. To induce the pitch-up motion on
the vehicle, an external force is applied on the horizontal stern planes. The magnitude of
the force and its duration is shown in the Fig. 22. (3) Straight-and-level flight phase that
extends from approximately t = 4.0 to t = 4.8. The force applied on the stern plane in the
phase 2 is removed, allowing the vehicle to return to the straight-and-level flight. It should
be noted that since the orientation of the vehicle has been changed during the previous
pitch-up phase, the vehicle will continue to move to higher elevations. (4) Pitch-down
phase starts from approximately t = 4.8 to t = 5.2. At this phase of the maneuver the
thrust on the horizontal stern planes are changed to induce a pitch-down maneuver.

Pressure distribution on the body of the vehicle is shown in the Figs. 21 and 23. Itis
worth noting the position of the stagnation point on the nose of the vehicle and compare it
with its position in the pitch-up phase of the maneuver. In the pitch-up phase the location
of the stagnation point is on the upper part of the nose, as expected. In the pitch-down
phase of the maneuver, the location of the stagnation point moves to the opposite side on
the lower part, again as physics of the problem dictates. (5) In the final phase the force
applied on the stern plane in the phase 4 is removed, allowing the vehicle to return to the
straight-and-level flight. From t = 5.2 to the end of the computation the vehicle travels in
the straight-and-level mode again.

Fig. 22 shows the magnitude and the manner in which the applied force on the horizontal
stern planes are changed. The trajectory of the location of the vehicle during the
maneuver is also shown in this figure. Angular rates experienced by the vehicle during
this maneuver are shown in Fig. 24. The angles of roll, pitch and yaw are shown in the
Fig. 25.

Diving Maneuver:

The procedure used to simulate the diving maneuver is very similar to the procedure used
during the rising maneuver, except the direction of the applied force on the horizontal
stern plane.

The trajectory of the location of the vehicle and the value of the force applied on the sten
plane is given in the Fig. 26. The angles and the angular rate experienced by the vehicle
are given in the Figs. 27 and 28. Considering the behavior of the roll rate in both rising
and diving maneuvers, it is interesting to note that the vehicle experiences a far more
radical roll from side to side in the rising maneuver than in the diving maneuver. This




could be attributed to the way that the sailplanes interact with the flow in these
maneuvers. In the pitch-up maneuver, sailplanes directly interact with the flow whereas in
the diving maneuver, the hull obstructs the free flow of the liquid towards the sailplane and
thereby inducing a far lesser fluctuation in the roll rate.

Conclusions:

A number of issues pertaining to various aspects of the maneuvering simulations are
addressed. These issues involved the choice for topology, the turbulence model, coupling
of the Navier-stokes equations of flow and the six-degree-of-freedom equations of motion,
full scale capabilities and the applicability of the method to simulate real world
maneuvering scenarios.

The investigation of grid topologies demonstrated that great care must be taken in
constructing a grid to preserve wakes and vorticies downstream of appendages. The H-
grid topology allows concentration of grid cells across an appendage wake in a relatively
straightforward manner when the wake is closely aligned with the streamwise direction.
The OH-grid topology requires more careful control of the O-block around an appendage
and the surrounding H-block to achieve satisfactory wake resolution. The O-block around
an appendage allows higher wall-normal resolution to be achieved with better grid quality
(cell orthogonality) than with an H-block. The proper prediction of the interaction of wakes
and vorticies with a propulsor is especially important in determining the steady and
unsteady propulsor loads, which are very important in correctly predicting the
maneuvering behavior of a vehicle.

Several turbulence models were investigated. They included the Baldwin-Lomax
algebraic mode! and elliptic two-equation models. The study demonstrated that the
original Baldwin-Lomax model is not suitable for the three-dimensional computations that
include vortical structures away from the body. This model dissipates and distorts the
vortical structures and underestimates axial and lateral forces. The algebraic model was
modified to account for the effects of the leeward-side vortices on the underlying viscous
layers. The modified Balwin-Lomax with an appropriately specified search parameter
produces very well-defined vortices, and the computed forces compare well with the
experimental data only if a suitable search parameter is used. Furthermore, the modified
Baldwin-Lomax preserved the vorticity better than any of the two-equation models studied.
This conclusion is in agreement with the results obtained by other investigators.

Computations are presented to demonstrate the capability of the flow solver to simulate
very high Reynolds number (i.e., 1.2 x 10°) flow over a submarine-like configuration. The
computation demonstrated that the very high Reynolds number computation can be
performed; however, the creation of the high-resolution grid in this case presented a
challenge.

Two depth-changing maneuvering simulations were performed to demonstrate the
suitability of the method. These simulations, although not compared with experiments,
demonstrated the physical behavior expected from a submarine undergoing similar
maneuvers. One remaining task would be to perform maneuvering computations for
which experimental data exists for comparison.
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(a) CH-grid
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Figure 7. Overview of block structure for



(a) CH-grid (EAGLEVIEW)

(b)OH-grid (GRIDPRO)

Figure 8. Block structure in the stern region:
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N (b) OH-grid

Figure 17. Flow near the stern appendage at 18° angle of drift;
contours of x-component of velocity




(a) H-Grid

(b)OH-Grid

Figure 18. Contours of x-component of veleeity around the stern appendage
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APPENDIX A

NUMERICAL PREDICTIONS OF TURBULENT FLOWS OVER
UNDERWATER VEHICLES AT HIGH INCIDENCE

Farhad Davoudzadeh, David Boger, Howard Gibeling
Computational Mechanics Department
Applied Research Laboratory
The Pennsylvania State University
State College, PA 16804

The high Reynolds number turbulent flow over an appended submarine
geometry at high incidence angles is predicted by solving the governing
Reynolds-Averaged Navier-Stokes equations. These flowfields are dominated
by leeward-side vortical structures and regions of crossflow separation. An
algebraic turbulence model as well as various modified versions and a two-
equation model are used in several sets of computations. The algebraic model
was modified to account for the effects of the leeward-side vortices on the
underlying viscous layers. The computed results were compared with
experimental data, and advantages and disadvantages of the models are
highlighted.

INTRODUCTION

Underwater vehicles and weapons are required to be highly maneuverable. This means flight at high
incidence angles. Furthermore, a detailed description of the high incidence flowfield is needed by the
designers of the body hull, hull appendages and propulsors. In addition, numerical prediction of the
trajectory of the maneuvering bodies requires computations of the high incidence flowfield. McDonald and
Whitfield {1] summarized the development of a new physics-based method for the prediction of the
trajectory of the underwater vehicles by coupling of the fluid dynamics with the vehicle dynamics. The
equations governing the vehicle motion are commonly referred to as the 6DOF equations. The 6DOF
equations describe the acceleration of a rigid body given the totality of forces and moments acting on it.
The RANS equations provide the means to calculate the hydrodynamic component of these forces and
moments. Integration of the 6DOF equations yields the time history of the vehicle’s velocity and rotation
rate. From this information, the vehiclz’s trajectory (the history of the position and orientation) can be
deduced by integration of purely kinematic relations. Davoudzadeh and others [2] implemented the method
and computed trajectories with the coupled solvers for a submarine geometry with a five-bladed propeller.
[t is clear that the accurate prediction of the forces and moments is key to the accurate prediction of the
vehicle trajectory. Therefore, this paper focuses on the accurate prediction of forces and moments acting
on underwaier vehicles at high incidence, and all of the comparisons made between the computed and the
experimental data are for the force components.

The flowtields associated with bodies at high incidence are three-dimensional, turbulent, and contam
regions of crossflow separation accompanied by leeward-side vortical structures. Numerical predictions of
these flowfields require a very fine grid to capture the off-body vortical structures and to resolve the
boundary layer. The off-body vortical structures are essentially inviscid and are created from the
underlying turbulent viscous boundary layer. Therefore, the choice of the turbulence model plays a major
role on the development, structure, stretching and strength of the vortices. Degani and others [3]
introduced a modification to the widely used Baldwin-Lomax eddy-viscosity turbulence model that
accounts for the presence of the leeward-side vortex structure. They presented results for supersonic [4]
and subsonic [5] high-incidence turbulent flow obtained using a parabolized Navier-Stokes method [6] and
their modified turbulence model. They reported good comparisons with the experimental data.



In the current work the models examined are the original Baldwin-Lomax[7], Degani’s modified version of
the Baldwin-Lomax[3], Baldwin-Lomax with various search parameters, and a new version of the model
which has more generality. We also include results using a two-equation turbulence model for comparison.
All of the models are incorporated in the incompressible Reynolds-Averaged Navier-Stokes (RANS) code
described below.

Implicit Unsteady Incompressible Flow Solver

The three-dimensional unsteady incompressible Reynolds-Averaged Navier-Stokes equations are first
written for a time-dependent curvilinear coordinate system. An artificial time term based on the artificial
compressibility formulation of Chorin [8] is then introduced to facilitate subiteration at each physical

time step (e.g., {9], and [10}). The governing equations are given by

a_Q.+ a_Q.+£+§€+ﬁ—0

o Tar 9f an ol
(hH

where
b
_qu
o=
w
b6, —k,)
ub+ ke p =T,
K=1J
ve, + k,p —T,
wo, + k,p -1,
8, =k +ku+kyv+kw
K=F,0,=U fork =¢
K=G,0, =V fork =n

K=H. 6, =W fork=1{¢

In these equations, p is static pressure; u, v, and w are the velocity components in Cartesian coordinates x,
v,and z; U, V, and W are the contravariant velocity components in the curvilinear coordinate directions &,
7. and { respectively; and 7 is time. The terms TLTLyT,c with k = &, m, or {, are the viscous flux
components in curvilineas coordinates. The Jacobian of the inverse transformation is J, and ky, ky, k;, and
k, with k = &, 1, or {, are the transformation metric quantities, where a subscript denotes differentiation.
The artificial compressibility parameter § typically has a value of 5 to 10. Finally, I, = diag [0,1,1,1], and
T 18 an artificial ime associated with the subiteration. The first term in Eq. (1) vanishes as the subiteration
converges, giving a solution to the physical unsteady equations.

A thin-layer approximation is used to simplify the viscous stress terms, and several turbulence models have
been implemented in modular form, including algebraic turbulence models [7], and a q-® model [11].
Details of treating the viscous terms are given by Gatlin [12], with an improvement due to Chen [13]
regarding the computation of tangential velocity derivatives normal to a solid surface. This simple
technique works extremely well on highly skewed grids [13]. .



Equation (1) is first discretized as a cell-centered finite-volume approximation, and the cell-face numerical
flux vectors are obtained using Roe'’s {14] flux difference split scheme. The nonlimited form of the
dependent variable extrapolation method of Anderson, Thomas, and van Leer [15] is used to obtain second
and third-order flux vectors [15]-{16]. The third-order upwind-biased numerical flux [15] is used for the
present results.

The implicit solution procedure for the discretized equations varies according to whether the solution of
interest is steady or unsteady. For steady flows, the second term in Eq. (1) is omitted, reducing the
equations to a standard artificial compressibility formulaton. The spaual difference terms are linearized

to produce a linear system for AQ", which is solved iteratively at each time step [17]. In this case, both

AQ" and the steady spatial derivative residuals are zero upon convergence of the (outer) time-step iteration
to a steady solution. For unsteady flows, an unsteady residual equation is defined from the last four terms
in Eq. (1) and is solved iteratively for Q"*'. In one dimension, for example, the unsteady residual becomes

AQ]

F(Qrﬁl) — IT + 5{F(Qn+l) — O
A1
2)
The function 9(x) in (2) is solved by an approximate Newton method given by
F /(Qn+1,m )(Qn+l,m+l - Qn+1,1n ) — F /(Qn+1.m )AQn+l,ln — _F (Qn+l,m )
(3)

where m = 1, 2, 3, ... is the Newton iteration index, and < ‘(x) is the Jacobian matrix of the vector

$(x) modified by replacing I by [ to utilize artificial compressibility. In principle, the generated sequence
Q™ ™1 converges to Q™' and hence Eq. (2) is satisfied. The linear system for Q°*' - ™" in Eq. (3) is
solved iteratively for each Newton iteration.

A symmetric Gauss-Seidel relaxation is used to solve the linear system of equations associated with each
iteration of Eq. (3). Because the flux Jacobian of the flux vector based on Roe’s formulation is difficult to
obtain analytically in three dimensions, and also in the interest of simplicity, the flux Jacobian is computed
numerically [18} [19]. This solution scheme is referred to as a discretized Newton-relaxation {201, or the
DNR scheme [19]. A multigrid scheme [21] s used to accelerate the numerical solutions, and this scheme
has been extended to multiblock [22] and unsteady flows [23]. The present solution procedure is, therefore,
a multigrid scheme for three-dimensional unsteady viscous flow. This procedure is the basis for a flow
simulation code called UNCLE (UNsteady Computation of fieL.d Equations).

Turbulence Models
Algebraic Models

The well-known Baldwin-Lomax turbulence model, which is based on the two-layer model of Cebeci and
others [24], does not take into account the complexities of the three-dimensional flowfield. The model gets
particularly confused when local vorticity exists in areas other than the near-wall boundary layer. This
situation happens when the flowfield contains vortical structures off of the body. This is due to the fact that
the eddy viscosity in the outer region is a function of the magnitude of the local vorticity. In the original
Baldwin-Lomax model formulation the algebraic eddy viscosity [ is given by:

u -— {(./ll)irmer’ y S yc
‘ (:uz)ouler’ y > yc

4



where y is the normal distance from the wall and y. is the smallest value of y at which values from the inner
and outer formulas are equal. The Prandtl-Van Driest formulation is used in the inner region

(.u[)irmer = pll[d ’

&)
where
[=ky[l—e™¥ "],
(6)
lwl is the magnitude of the vorticity
ldf = yo: + o] +0;
{7
and
y+:(vaT\V/ﬂW)y
(8)
In the outer region, for attached boundary layers, the turbulent viscosity coefficient is given by
(/'ll )ourgr = KCC[)p Fwa}:e Fk[eb (y)
&)

where K is the Clauser constant, Cg is an additional constant and Fy., is the Klebanoff intermittency
factor, and

F =Y F

wake max max -’

ao,m
The quantities Y, and Fy,; are derived from the function

F(y)=|af yl1-e™"'*"]
(1)

where Fr is the maximum value that the function F(y) takes in a local profile, and Y. is the value at
which Fge; occurs.  The constants appearing in the above relationships have been determined by requiring
agreement with the Cebeci [24] formulation for constant pressure boundary layers at transonic speeds. The
values determined are K = 0.0168, A* = 26, and C,, = 1.6.

As previously demonstrated by Degani and Schiff [3] the main difficulty in applying the Baldwin-Lomax
turbulence model to three-dimensional flow containing regions of crossflow separation is the determination
of the length scale Ynmax and in tumn, of evaluating (W)ome for boundary-layer profiles in the crossflow
separation region. To demonstrate this difficulty, they looked at behavior of the F(y) function along two
rays-one located in the windward side at ¢ = ¢, and the other one on the leeward side at ¢ = ¢,, shown in
Fig. 1. The functions are shown schematically in Figs. 2a and 2b, respectively. The function along the ray
in the windward side contains only one well-defined peak, whereas along the ray in the leeward side it
contains two distinct peaks. These peaks are manifestations of the vorticity magnitude contained in the
function F(y). The first peak in Fig. 2b comes from the vorticity magnitude contained in the boundary




layer, whereas the second peak originates from the vorticity magnitude contained in the off-wall vortical
structure. If one uses the length scale corresponding to this second peak, as would be the case for the
original Baldwin-Lomax model, the computed eddy viscosity in Eq. (9) will be at least an order of
magnitude larger than the eddy viscosity value related to the Iength scale corresponding to the first peak.
This exaggerated eddy viscosity will have the effect of weakening, deforming, and dissipating, if not
eliminating all together, the vortical structures in the flowfield. Furthermore, the computed drag on the
body will be too high. This has serious implications on the prediction of the maneuverability of the
underwater vehicles with such a model.

Windword

Fig 1. Schematic of Flow Structures in Crossflow Plane (After Degani et al. [3])

<

Fly)) F(

-
-

Lesward side

&
1}
o
w
=
ol
=2
It
&

aax @ Y. Vinax 9. y:
Fig.2 Behavior of F(y) at Large Incidence at a Cross Section Containing Vortices (After Degani et al. [3])

Partial Differential Turbulence Modeis

The idea behind eddy viscosity models comes from the Boussinesq approximation that the Revnolds shear
stress can be related to the mean shear by

—uv =v,0U/dy.

(12)

Equation (12} defines the turbulent viscosity, vy, which is dimensionally equal to the product of a velocity
scale and an appropriate length scale. For example. the Baldwin-Lomax model described above chooses
the velocity scale o be the magnitude of vorticity times a length scale. and the length scale is prescribed
algebraically. Unfortunately, prescribing a length scale while maintaining sufficient generality is difficult,
as was just described.



A method which provides for more generality is to incorporate partial differential equations for the
transport, production, and dissipation of both the velocity- and length-scale determining quantities. Here,
following Coakley [11], the velocity scale is taken to be the square root of turbulent kinetic energy, ¢, and
the length-scale determining quantity is the time rate of dissipation, ®, governed by

Dg_9 LM& 9

P Dt Bx‘,.

: 2
% Jo%) +Z[2MS@‘SU“PMJ]

p% -9 ) +§L}§Q— +pec,28,S, — pe,’

Dt ox; ox,
(13)
The eddy viscosity is then formulated as
#T = IOC‘quz /a)
(1)

y v, the distance to the nearest solid wall.

where D=l1-exp(-ogv/v) is a damping function based on
833, ¢, =0.09. and o, =6, = 2.0.

Completing the model, 0=0.020, ¢,=0.0553+0.5D, ¢, = 0.

The solution method is the same as the method described previously for the flow equations, except that it is
applied to two equations instead of four. The velocity field is treated as lmown for this part of the sotution,
but the turbulence equations are coupled together through their source termis. More details of the model
and its implementation are described elsewhere [25].

RESULTS

All of the computations presented here are conducted on a SUBOFF body with four stern appendages.
SUBOFEF has the shape of a typical underwater vehicle. Groves and others [26] designed an axisymmetric
hull model for SUBOFF that could be used with and without typical appendage componchts, such as a
fairwater (sail) and four identical stern appendages. Roddy [27] reported experiments that include
measurements of forces and moments acting on the SUBOFF body, with and without appendages at drift
angles ranging trom 0.0° to 18.0°. All experiments were carried out at a Reynolds number of 14.000,000
based on the body length.  Since the body is symmetric, only half of the body is gridded for the
computations. A C-type grid with 8 blocks and 81x73x33 (195.129) grid points per bl ocl\«gu ing a total of
1,561,032 grid points-- is used. The grid is split into two parts in the axial direction and four parts in the
circumferential direction. No blocking is made in the radial direction. Each fin surface has 17 grid points
in the axial direction and 33 grid points in the radial direction.

Original Baldwin-Lomax

Using the algebraic model as proposed by Baldwin-Lomax [7], a series of steady computations for different
drift angles are performed. Fig. 3 shows contours of axial components of vorticity on SUBOFF at 18°
angle-of-drift for the "ompumuons using the original Baldwin-Lomax model. This figure shows the three
dimensionality of the flow, and the development and roll-up of the vortex structure on the leeward side of
the body. However, as pointed out earlier, the high value of the calculated eddy viscosity associated with
the second peak (see Fig. 2b) causes the vortex to be weak and not well-defined. Fig. 4 shows a cross
section of the computed pressure distribution at ¥/l = 0.63.  Fig. 5 shows the axial force against the drift
angle, with the error bars associated with the experimental data. The computed axial force, for most angles
of drift, underestimates the experimental values, i.e., extra eddy viscosity induces higher drag on the body.
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Baldwin-Lomax with constant search parameter

In the second series of computations, the search for Fy,. along radial rays (shown in Fig.4) is limited to the
value y© = 750. Once this Fyx is found, the corresponding Y is determined. Eddy viscosity is
subsequently determined from Eqs. 9 and 10. Figure 6 shows the computed contours of the x-component
of vorticity for 18.0° angle-of-drift computations. Comparison of this figure with Fig. 3 demounstrates the
formation of a stronger and better defined leeward vortical structure. A cross section of pressure
distribution at x/1 = 0.63 is shown in Fig. 7. In contrast with the Fig. 4, the presence of a pair of very well
defined vortices is evident in the leeward side of the body. Figure 7 also shows the radial directions along
which the function F is evaluated. The radial lines of 161.26° and 167.08° pass almost through the
primary vortex core. A secondary vortex also occurs between the radial lines of 128.8° and 145.76°.
Variation of F against y*, along the radial lines shown in Fig. 7, for 18° drift angle is presented in Fig. 8b.
In this figure, the values of Fy, picked by the computer code, based on the search parameter of 750 are
also shown. Figure 8b shows that, for the most part, Fy. is related to the boundary layer thickness - i.e. the
first peak is realized - except at 145.76°. The lower value of i calculated in this computation results in
lower values for the eddy viscosity relative to the original Baldwin-Lomax model. As a result, the leeward
vortex is better defined and maintained. Figure 9 shows comparisons of the computed and experimental
data for various angles of drift. The model prediction compares well with all the positive angles of drift
higher than 10°. The model overpredicts the axial force for drift angles, between 0° and 10°. An
examination of the function F along the zero radial line for the zero angle-of-attack cases shown in Fig. 8a,
eveals that due to the search constraint of 750, a lower value of Fp,; is picked by the code. This explains
why the magnitude of axial force in Fig. 9, for small drift angles is overpredicted. Obviously for small drift
angles, one could cheose a higher value of the search parameter, but for consistency, all computations
presented in Fig. 9 are conducted with the search value of 750.
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A close examination of Figs. 8a-8b reveals that a search parameter of y© = 2,500 is most likely to capture
the first peak for all drift angles under consideration. Fig. 10 shows the comparison between the computed
axial force coefficient obtained with search parameter of 2,500 and the experimental values at various
angles of drift. For drift angles higher than approximately 10°, the comparison is similar to the results
obtained with the search parameter of 750. However, for all the angles between 0° and 10°, the prediction
is remarkable. Unfortunately, because of the asymmetry of the experimental data (for a symmetric body).
no model can predict these experimental data for both negative and positive values of the drift angle.
Comparison of the lateral force coefficient is shown in Fig.11. Tt should be noted that the lateral force
coefficients compare well with the experimental data for all of the models discussed above. This is due to
the fact that the contribution of the viscous stresses to the computed component of the force is much higher
in the axial direction than in the lateral direction. The lateral force comes mainly from the pressure field.
This is better demonstrated in Figs. 12 and 13. Figure 12 shows the contributions of the viscous stresses
and pressure field to the total axial force coefficient. Figure 12 also shows the total axial force coefficient,
both experimental and computed. For drift angles greater than 10°, the pressure field contribution to the
axial force creates a thrust on the body (due to the shape anomaly). whereas for drift angles less than 10°,
the contribution is drag on the body. Contribution of the viscous stresses to the axial force is all drag. Fig.
13 shows similar divisions for the lateral force coefficient. It is evident from this figure that the
contribution of the viscous stresses to the lateral force is very small, compared to pressure.
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Towards a generalized model

The modified Baldwin-Lomax with the constant search parameter of y* = 2.500 produces results that
compare very well with the experimental data. Choosing an appropriate search parameter in this way relies
on trial and error and on running one or two cases, preferably at 0.0° and a high degree incidence angle.
Degani and Schiff [3] suggested other strategies for setting a search limit which require the prior
knowledge of the windward side and the leeward side of the body. The issue with maneuvering bodies is
that the windward and the leeward sides are not fixed. The vehicle, in the course of a maneuver, causing a
significant change its orientation, causing a change in the locations of the leeward and windward sides.

To eliminate the need for a constant search parameter and the need to know the leeward and the windward
sides of the vehicle a priori, a new model is suggested. The essence of this new model is that, in the
boundary layer, the magnitude of the axial component of vorticity is very small, compared with that of the
lateral component of vorticity. Therefore, @, does not contribute much to the magnitude of the vorticity in
the boundary layer. However, outside of the boundary layer, where the off-body vortex structures exist, the




contribution of the ®; to the voricity magnitude is large (see Fig. 2b). This implies that @; can be used to
eliminate the second peak in F by defining a new function G as follows:

Gy =@l y[l-e "]

(15)
where,
@ =0l —w; +o;

(16)

The functions F and G are shown schematically in Fig. 14. The only difference between the two functions
is the way in which | @ | is defined. It is assumed, as shown in Fig. 14a, that G eliminates the second,
larger peak produced by F, and that the peak in G occurs at approximately the same y location as the first
peak in F. This is a fairly sound assumption, since the contribution of ® in the boundary layer to the
vorticity magnitude, and therefore the size of the peak, is negligible. Furthermore, since the contribution
of Wy, outside of the boundary layer where vortices exist is large, its exclusion from Eq. (16) can subdue the
large peak caused by the vortical structures. For 18.0° angle-of-incidence computations, Fig. 15 shows the
variation of different forms of F and G against the radial distance from the wall at ¢ = 167.08°. Figures

5a-15b and 15¢ shows F when only the ®,, ®, or &, were considered in Eq. (7). Figures 13d and 13e
show functions G and F. [tis clear from Fig. 15a that the magnitude of @, is not noticeable in the boundary
layer region, and it is very large in the vortex region. Comparison of Fig. 13a with Fig. 13¢ demonstrates
how this large value of ®, bas dominated the overall magnitude of the vorticity and has produced the larger
peak in F. On the other hand, Fig. 15d shows how the search for the maximum peak in G yields a length
scale that is the same as the first peak in F, Fig. 15e. Using this new modified method a series of
computations is performed for incidence angles of 0.0° through 18.0°. Figure 16 shows the pressure
distribution at %/l = 0.63 for the drift angle of 18.0°. The leeward vortices are clearly shown on the top
portion of the figure. These vortices are stronger and better defined than those obtained under the original
Baldwin-Lomax model, but they are not as strong as the ones computed with the constant search
parameters. An examination of the variation of F along radial lines, Fig. 17, shows that although the model
picks the appropriate peaks for the determination of Fy, for most rays, it fails for some, e.g. for ¢ =
174.87°. This deviation occurs because the vortical structures are not aligned with the axial direction of the
body, causing the calculated lateral vorticity to have a larger value than the value if the vortex core was
aligned with the axis of the body. This causes the shape of G to be different than the assumptions
presented earlier. Comparison of the axial force coefficient with the experimental data for this new model
is shown wx Fig. 18, Unlike the other computations, the computed values fall within (he error bars (or all
positive and negative angles of drift.
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Two-Equation Model

Algebraic models are highly desirable as turbulence models because they are inexpensive computationally
and are generally very robust. On the other band, higher-order models may be required to atiain sufficient
generality and accuracy. Here, Coakley’s g-o model was applied to the finest grid for the cases of 0°, 8°,
and 18° angle-of-attack. The lateral force was well predicted, similar to the one shown in Figure 11;
however, the axial force compared in Fig. 19, is shown to be too high. It was suspected that the cause was
an over-prediction of turbulent kinetic energy at stagnation points (principally at the nose). A treatment for
this problem has been suggested by Durbin [28], it amounts to the following specified on @:

> ,[3(25,5,)C,D
{17}

The results at (°and 8° are somewhat improved by this modification, see Fig. 19, but at the cost of
robustness - - the case at 18° angle-of-attack could not be completed.

For both two-equation medels, the computed eddy viscosity is relatively high in the vortex cores, and
consequently, the shed vorticity is diffused too quickly.
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GRID STUDY

eviously Ref. [25] investigated the influence of grid deusity on the accuracy of the computed forces and
moments, with three grid were constructed: A fine grid with 12 blocks and 81x89x41 grid points per block.
a medium grid with 8 blocks, as described earlier, and a coarse grid with 8 blocks and 41x37x17 grid points
per block. The results obtained from these three grids considering only the variation of the axial force
coefficient with angle of drift showed that only slight differences exist between the fine and medium grids.
Computations using the coarse grid under-predict the axial force coefficient for positive angles of drift. All
these grids compared well for the lateral force coefficient and yawing moment coefficient. This is due to
the fact that the contribution of the viscous stresses to the lateral-force and yawing-momeunt is not as large
as it is for the axial force.

CONCLUSION

A series of computations are performed to evaluate the suitability of several algebraic as well as partial-
differential two-equation turbulence models. The algebraic models considered are the original Baldwin-
Lomax model, Degani and Schiff variation of the Baldwin-Lomax model, and a new proposed maodel.
Furthermore, the two-equation model of Coakley s also evaluated, The computations demonstrate that the
original Baldwin-Lomax is not suitable for the three-dimensional computations that include vortical
structure away from the body. This model dissipates and distorts the vortical structures and underestimates
axial and lateral forces. The medified Balwin-Lomax with the specified search parameters produces very
well-defined vortices, and the computed forces compare well with the experimental data only if a suitable
search parameter is used. However, the search for the suitable search parameter relies on trial and error,
and therefore, these models are not general. The proposed algebraic model is a general model that does not
need a search parameter and does not require prior knowledge of the leeward or the windward side. It
preserves the structure of the vortices better than the original Baldwin-Lomax does. However, in ils present
form, it assumes that the core of the vortical structures is aligned with the axial axis of the body. A more
general extension of the model should consider alignment of the vortical structures in any direction. The
wo- equation model of Coakley is also considered. The model predicts relatively high eddy viscosity in the
cores of the shed vortices, and so the vortices diffuse too quickly.
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